

Bau- und Umweltschutzdirektion

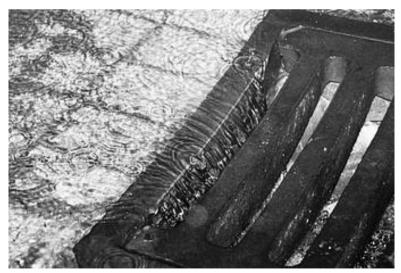
Kanton Basel-Landschaft

Amt für Umweltschutz und Energie

Die Siedlungsentwässerung bei Regenwetter Vergleich und Diskussion der Gewässerschutzgrundlagen

Programm

- Problemanalyse und Lösungsstrategien
- Neue Ansätze und kritischer Vergleich der Lösungen
- Diskussion


Problemanalyse

Übersicht über die Lösungsstrategien Neue Lösungsansätze

Kritischer Vergleich Versuch einer Synthese

Inhalt der Präsentationen

- 1. Problemanalyse
- 2. Übersicht über die Lösungsstrategien
- 3. Neue Lösungsansätze
- 4. Kritischer Vergleich
- 5. Versuch einer Synthese

1. Problemanalyse

Wie sieht der Sachverhalt aus heutiger Sicht aus?

- der technische Stand der Abwasserbehandlung ist bei © Trockenwetter deutlich höher als bei © Regenwetter
- bei Regenwetter werden Schadstoffe vielerorts unbehandelt in Gewässer eingeleitet
- die Herkunft dieser Schadstoffe ist sehr unterschiedlich
- die Dynamik und die Wirkungen des Schadstoffausstosses sind variabel
- das Entwässerungssystem lenkt die Schadstoffe und ist somit für Art, Dauer und Ort der Gewässerverunreinigung verantwortlich
- der Komplexität der Schadstofftransmission stehen einfache gesetzliche Grundlagen gegenüber
- über die Siedlungsentwässerung bei Regenwetter besteht keine ganzheitliche
 CH-Richtlinie

Problemanalyse

Übersicht über die Lösungsstrategien Neue Lösungsansätze Kritischer Vergleich Versuch einer Synthese

1. Problemanalyse

Problemanalyse

Übersicht über die Lösungsstrategien Neue Lösungsansätze

Kritischer Vergleich

Herkunft der Verschmutzungen im Regenwasserabfluss	beim
Niederschlag Schadstoffkomponenten der Luft werden ausgewaschen und gelangen in den Wasserkreislauf.	Trenn- und Mischsystem
Oberflächenabfluss Schadstoffdepots werden von den Oberflächen abgewaschen (teilweise als Spülstoss).	Trenn- und Mischsystem
Häusliches und industrielles Abwasser Schmutzwasser - mit Regenwasser verdünnt - gelangt ungereinigt in die Gewässer.	
Spülstoss Fäkalablagerungen aus der Kanalisation werden ausgespült und gelangen stossweise in die Gewässer.	Mischsystem

1. Problemanalyse

Problemanalyse

Übersicht über die Lösungsstrategien Neue Lösungsansätze Kritischer Vergleich Versuch einer Synthese

Problemstoffe	Toxizität des	Bedeutung Anteil der Schmutzstoffe im unbehandelten Abfluss in die Gewässer			
	Abflusses	im Trennsystem bei jedem Regen	im Mischsystem bei starkem Regen		
im Niederschlag Staub, Russ, N, SM,	gering-mittel	schwach-mittel 5-20%	sehr gering <5%		
im Oberflächenabfluss CI, SM, KW, PAK, PSM,	gering-hoch	hoch 80-95%	schwach-mittel 5-10%		
im häuslichen und industriellen Abwasser C, N, SM, KW,	mittel-hoch		schwach-mittel 5-10%		
im Spülstoss C, N, SM, KW	mittel-hoch		sehr hoch 80%		

2. Übersicht über die Lösungsstrategien

Die gesetzliche Grundlagen

eidg. GSchG, Art 6 – Grundsatz

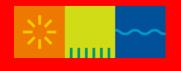
keine Stoffe einbringen, die Gewässer verunreinigen können (d.h. keine
Beeinträchtigung der Funktion eines Gewässers durch physikalische,

chemische oder biologische Veränderung des Wassers)

eidg. GSchG, Art 7 – Abwasserbeseitigung
wie sind verschmutztes und nicht verschmutztes Abwasser zu behandeln

eidg. GSchV, Art. 3 – Abgrenzung

Beurteilung des Abwassers aufgrund Art und Herkunft, Menge, Eigenschaften, zeitlichen Anfall der Stoffe, Zustand des Gewässers


eidg. GSchV, Anhang 3.1 Abs 1.3 (MW) und Anhang 3.3 Abs 1.1+2 (RW)

Anforderungen sind im Einzelfall durch die Behörde festzulegen

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze Kritischer Vergleich Versuch einer Synthese

2. Übersicht über die Lösungsstrategien

Problemanalyse

Übersicht über die
Lösungsstrategien

Neue Lösungsansätze Kritischer Vergleich Versuch einer Synthese

Problemstoffe	Toxizität des	Bedeutung Anteil der Schmutzstoffe im unbehandelten Abfluss in die Gewässer			
	Abflusses	im Trennsystem bei jedem Regen	im Mischsystem bei starkem Regen		
im Niederschlag Staub, Russ, N, SM,	gering-mittel	schwach-mittel 5-20%	sehr gering <5%		
im Oberflächenabfluss CI, SM, KW, PAK, PSM,	gering-hoon	hoch 80-95%	schwach-mittel 5-10%		
im häuslichen und industriellen Abwasser C, N, SM, KW,	mittel-hoch		schwach-mittel 5-10%		
im Spülstoss C, N, SM, KW	mittel-hoch		sehr hoch 80%		

2. Übersicht über die Lösungsstrategien

Problemanalyse

Übersicht über die
Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

Versuch einer Synthese

Kriterien für eine Regenwasserbehandlung


Werkunftsfläche (Art, Belastung, Lage, Exposition, Reinigung)

bei der Einleitung:

Empfindlichkeit des Gewässers (Typ, Grösse, Sohlenbeschaffenheit, spezifisches Einleitverhältnis, Gewässerschutzbereich)

bei der Versickerung:

Empfindlichkeit von Boden und Grundwasser (Boden- und Untergrundaufbau, Gewässerschutzbereich, Vulnerabilität des GW)

Übersicht über die Lösungsstrategien

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze Kritischer Vergleich Versuch einer Synthese

Anhang 6 (§ 5 kGSchV) Bewilligungspflicht von Versickerungen und Einleitungen in Gewässerschutzversichen und Einleitungen in Gewässerschutzver

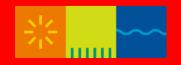
	Einstufung	Beurteilung							
		Gewässer-		V	eralcke	rungen¹	1,2,3		
Kategorie	Flächenart	einleitungen¹	mit Passage der belebten Bodenschlicht ⁴			ohne Passage der belebten Bodenschloh			
A	Verkehraflächen		in Schutzzonen 63	in Gewässerschatz- bereichenfäu, Zuj in Grundwasser- schutzere ein	in darigen Bereichen	in Schutzzonen 83	in Ge wässe nichtz- bereichen (Au, Zu) in Grundwasser- schutzare sien	in dizigen Bereichen	
A1	für Warenumschlag, Lagerplätze, Arbeits- und Betankungsflächen mit wassergefährdenden Flüssigkeiten								
A2	Bahnanlagen, Ranglerbahnhöfe etc.	к		к	к		к	к	
A3	mit regelmässigem motorisierten Fahrzeugverkehr (DTV > 3000) inkl. Sprühfahnenbereich für ruhenden Verkehr bei häufigem Fahrzeugwechsei	к		к	к		к	к	
A4	mit regelmässigem motorisierten Fahrzeugverkehr (DTV s 3000) inkl. Sprühfahnenbereich für ruhenden Verkehr bei seitenem Fahrzeugwechsei ohne die Plächen Kaltegorie A1	G		G	G		G	G	
A5	ohne regelmässigem motorislerten Fahrzeugverkehr in stark frequentierten Zenfrumslagen bei Intensiver Personennutzung oder regelmässiger Flächenreinigung ohne Tenside	G		G	G		G	G	
A6	für Warenumschlag, Lagerplätze, Arbeitsflächen ohne wassergefährdende Flüssigkeiten	G		G	G		G	G	
A7	ohne regeimässigem motorisierten Fahrzeugverkehr aussemab des Sprühfahnenbereichs der Flächen Kategorie A2 und A3	G	Ø	ø	G		G	G	
В	Dachflächen								
B1	> 50 m² bei Regen benetzte, unbeschichtete Ober- flächermaterfalten, von denen eine Gewässergefährdung ausgeht (z.B. Kupfer- und Zinkudächer) In exponierten Lagen mit starker Luttverschmutzung (Verhehr, industrielle Produktion)	к		к	к		к	к	
B2	s 50 m² bei Regen benetzte, unbeschichtete Ober- flächenmaterialien, von denen eine Gewässergefährdung ausgeht	G	G	G	G		G	G	
В3	Oberflächenmateriallen, von denen keine Gewässer- gefährdung ausgeht	G	ø	G	G		G	G	
	Legende zalánig, B	wiligung ohra Arafag		1	willigungs	hahiteda	_		
	zoliknig mit Andhgo Massenhenen d	er, Bouriellung und Fest nech die Bewilligungebe	legneg von hörde		G=Gen K=Kn				

- sities 1.0 file feragen.

 reten von bestalen Standorlen ist es niort zulässin, gefassies Regenativasser zu versioken. Bei ungektärter Seiastungssituation
 set "Jeretauhsflächen) ist der Nachneis zu entringen, dass der Untergrund sauber ist.

 bereitlichsen schrieben Versicherungen ann die Behörte Aussamhen von der Beitligungsgründt zulässen, wenn die erthäßserterien «1000 m² sind und sich aussemalt von Grundwasserschrutzzonen kanseiten und "Aftastien"-Verdachtsflächen befinden.

neue kantonale Gewässerschutzverordnung, Anhang 6


regelt:

- Zulässigkeit und Bewilligungspflicht bei Versickerungen und Einleitungen in Gewässer
- **Zuständigkeit (Gemeinde / Kanton)**

anhand von abgrenzenden Kriterien:

Flächenart, Belastung, Flächengrösse, Gewässerschutzbereich

Strategie führt zu Behandlungsanlagen für verschmutztes Regenwasser

2. Übersicht über die Lösungsstrategien

Problemanalyse

Übersicht über die
Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

Versuch einer Synthese

Massnahmen

- vermeiden von bedenklichen Dachmaterialien
- Regenwasserversickerung
- Regenwasserrückhalt
- schadstoffspezifische Behandlung von verunreinigtem Regenabwasser, z.B. in SABA

2. Übersicht über die Lösungsstrategien

Problemanalyse

Übersicht über die
Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

Versuch einer Synthese

SABA Kantonsstrasse Oberdorf im Bau

2. Übersicht über die Lösungsstrategien

Problemanalyse Übersicht über die

Neue Lösungsansätze Kritischer Vergleich

Lösungsstrategien

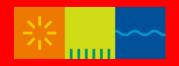
Problemstoffe	Toxizität des	Bedeutung Anteil der Schmutzstoffe im unbehandelten Abfluss in die Gewässer			
	Abflusses	im Trennsystem bei jedem Regen	im Mischsystem bei starkem Regen		
im Niederschlag Staub, Russ, N, SM,	gering-mittel	schwach-mittel 5-20%	sehr gering <5%		
im Oberflächenabfluss CI, SM, KW, PAK, PSM,	gering-hoo	hoch 80-95%	schwach-mittel 5-10%		
im häuslichen und industriellen Abwasser C, N, SM, KW,	mittel-hoch		schwach-mittel 5-10%		
im Spülstoss C, N, SM, KW	mittel-hoch	-	sehr hoch 80%		

2. Übersicht über die Lösungsstrategien

Problemanalyse

Übersicht über die
Lösungsstrategien

Neue Lösungsansätze

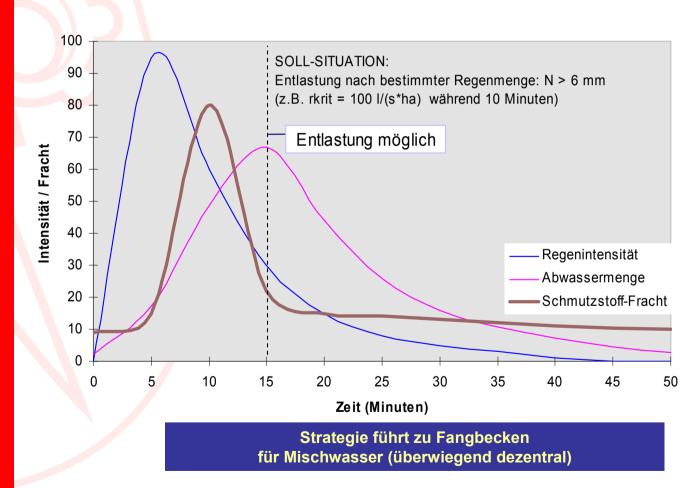

Kritischer Vergleich

Versuch einer Synthese

Kriterien für eine Mischwasserbehandlung

- Menge des Regenabflusses ("Akutereignis")
- Schleppspannungen in der Kanalisation
- realistische Abflussfaktoren im Einzugsgebiet
- Grösse des Einzugsgebietes
- Transportkanäle

2. Übersicht über die Lösungsstrategien


Problemanalyse

Übersicht über die
Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

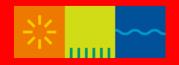
Versuch einer Synthese

2. Übersicht über die Lösungsstrategien

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze


Kritischer Vergleich

Versuch einer Synthese

Massnahmen

- vermeiden von Regenwasserabfluss
- abkoppeln von Regenwasser (-versickerung, -rückhalt, -abtrennung)
- neu einstellen der Mischwasserentlastungen (Transportkanäle)
- erstellen dezentraler Speicherbecken und -kanäle für Mischwasser
- installieren einer Verbundsteuerung (Speichernutzung und -entleerung)

2. Übersicht über die Lösungsstrategien

Problemanalyse

Übersicht über die
Lösungsstrategien

Neue Lösungsansätze

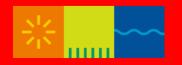
Kritischer Vergleich

Versuch einer Synthese

Mischwasserbecken, ARA Birs 1, Reinach

2. Übersicht über die Lösungsstrategien

Problemanalyse

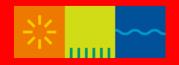

Übersicht über die
Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

Versuch einer Synthese

Verschmutzungen im Regenwasserabfluss	Richtlinien	Regenereignis
im Niederschlag Staub, Russ, N, SM,	1	
im Oberflächenabfluss CI, SM, KW, PAK, PSM,	BUWAL 2002	n=5 → 300 l/s/ha
im häuslichen und industriellen Abwasser C, N, SM, KW,	1	
im Spülstoss C, N, SM, KW	BL 2000 (eidg. AfU 1977)	6 mm ≡ 100 l/s/ha in 10 min (15 l/s/ha)



Übersicht über die Lösungsstrategien

Neue Lösungsansätze Versuch einer Synthese

Verschmutzungen im Regenwasserabfluss	Richtlinien	Kosten (P1-Massnahmen bis 2020)
im Niederschlag Staub, Russ, N, SM,	-	-
im Oberflächenabfluss CI, SM, KW, PAK, PSM,	BUWAL 2002	15 - 20 Mio. Fr.
im häuslichen und industriellen Abwasser C, N, SM, KW,	-	-
im Spülstoss C, N, SM, KW	BL 2000	~ 50 Mio. Fr.*

*exkl. Aufwand für die Abkopplung von Regenwasser (Versickerung, etc.)

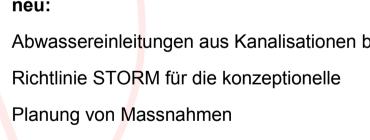
Problemanalyse Übersicht über die Lösungsstrategien

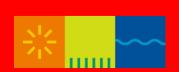
Kritischer Vergleich

3. Neue Lösungsansätze

Bundesebene

bisher:


Empfehlung für die Bemessung und Gestaltung von Hochwasserentlastungen und Regenüberlaufbecken,


Eidg. Amt für Umweltschutz, 1977

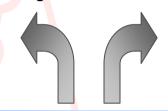
neu:

Abwassereinleitungen aus Kanalisationen bei Regenwetter, Richtlinie STORM für die konzeptionelle

VSA, Entwurf 2005

Problemanalyse

Übersicht über die Lösungsstrategien


Neue Lösungsansätze Kritischer Vergleich

3. Neue Lösungsansätze

Planung der Abwasseranlagen

emissionsorientiert

Schweizer Gewässerschutzstrategie



immissionsorientiert

Ziel: Emissions- durch Immissionsansatz ersetzen

Problemanalyse Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Versuch einer Synthese

Kritischer Vergleich

3. Neue Lösungsansätze

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

Versuch einer Synthese

Anforderungen an die Abwassereinleitungen (Richtlinie STORM):

- Berücksichtigung verschiedener Gewässerarten
- Mindestanforderungen (ZB G, ARA-GEP, REP)
- @ Grenzwerte der stofflichen Belastung
- Grenzwerte der physikalischen Belastung
- @ Grenzwerte der hygienischen Belastung
- Ästhetische Belastung
- Festlegen der Einleitungsbedingungen in Absprache mit der kant.
 Gewässerschutzfachstelle

3. Neue Lösungsansätze

Berücksichtigung verschiedener Gewässerarten

Problemanalyse

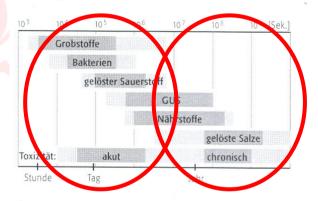
Übersicht über die Lösungsstrategien

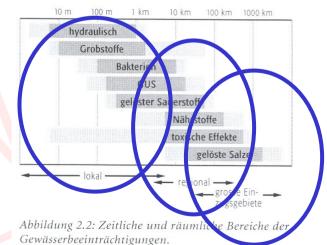
Neue Lösungsansätze

Kritischer Vergleich

Versuch einer Synthese

Gewässertyp	Q ₃₄₇ [m ³ /s]	Mittlere Wasser- spiegelbreite [m]	Mittlere Fliessge- schwindigkeit [m/s]	
kleiner Mittellandbach	< 0,1	<1	< 0,5	
grosser Mittellandbach	0,1 - 1,0	1-5	< 0,5	Birsig
kleiner Voralpenbach	< 0,1	< 1	> 0,5	
grosser Voralpenbach	0,1 - 1,0	1 – 5	> 0,5	100
grössere Fliessgewässer	>1,0	>5	> 0,5	Rhein
kleiner See (Weiher)	-	-	<< 0,5	
grosser See	÷	÷	<< 0,5	


Tab. 1 Einteilung der Gewässer, angelehnt an Wegleitung: Gewässerschutz bei der Entwässerung von Verkehrswegen, BUWAL 2002 [7].



3. Neue Lösungsansätze

Gewässerbeeinträchtigungen bei Regenwetter

«zeitliche Bereiche»

«räumliche Bereiche»

Problemanalyse

Übersicht über die Lösungsstrategien

Kritischer Vergleich Versuch einer Synthese

Neue Lösungsansätze

Fachstelle Siedlungsentwässerung und Landwirtschaft - 28.04.2006

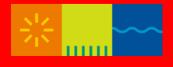
3. Neue Lösungsansätze

Übersicht Gewässerschutzprobleme

Tabelle 2.2: Übersicht Gewässerschutzprobleme im Zusammenhang mit Kanalisationseinleitungen bei Regenwetter, ihre Häufigkeit in der Schweiz und der Bereich der definierten Anforderungen in dieser Richtlinie

	Gewa	ässerscl wetter,	nutzprob ihre Hä	oleme im ufigkeit j	n Zusam und der	menhar Bereich	ng mit A der def	bwasse inierten	reinleitu Anforde	ngen au rungen	s Kanal (gelb m	isatione arkierte	n bei Re Felder)	egen-
sertyp	Äussere Hygiene		iene	ne		Gesamte ungelöste Stoffe								
Gewässertyp	Grobstoffe	Weitere	Baden, Spielen	Trink-wasser*)	Mech. Hydr	Temperatur	NH3	Kolmation	Trübung	Tox.Sedim	Anaer. Sohle	05	Nährstoffe	Weitere
Quelle	+	++	0	0/?	++	++	++	++	++	++	++	+	0	?
Kleiner Mittellandbach	++	++	++	0/?	++	+	++	++	++	++	++	+	0	?
Kleiner Voralpenbach	+	++	++	0/?	++	+	+	0	++	0	0	0	0	?
Grosser Mittellandbach	++	++	++	o/?	+	0	+	++	++	++	++	+	0	?
Grosser Voralpenbach	++	++	++	o/?	+	0	+	0	++	0	0	0	0	?
Grosses Fliessgewässer	++	+	+++	o/?	0	0	0	0	0	0	0	0	0	?
Kleiner See	++	++	+	0/?	0	0	0	+++	0	+++	0	0	++	?
Grosser See	+	+	+	0/?	0	0	0	++ -	0	++	0	0	+	?
Fluss-Stau	+	+	++	0/?	0	0	0	++	0	++	0	0	+	?

Häufig: +++, Gelegentlich: ++, selten: +, nicht festgestellt: O, keine Angaben: ?


Relevanz der Probleme: bedeutend (orange), unbedeutend (weiss)

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

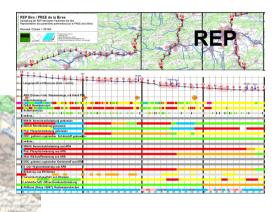
Kritischer Vergleich

^{*)} Die Trinkwasserbeeinträchtigung durch Abwassereinleitungen aus Kanalisationen bei Regenwetter kann nicht ausgeschlossen werden. Allerdings gibt es nur wenige Angaben bezüglich dieser Situation.

3. Neue Lösungsansätze

Mindestanforderungen

Problemanalyse


Übersicht über die Lösungsstrategien

Neue Lösungsansätze

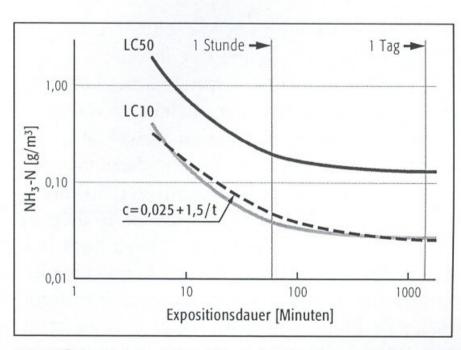
Kritischer Vergleich

Versuch einer Synthese

ARA-GEP

3. Neue Lösungsansätze

Grenzwerte der stofflichen Belastung – Ammoniak


Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

Versuch einer Synthese

Abb. 1 Kritische Intensität und Dauer der Einwirkung von Ammoniak für Bachforellen nach Whitelaw & de Solbé [9]. Die vorgeschlagenen Grenzwerte sind mit der gestrichelten Linie dargestellt. Diese Werte sollen nicht häufiger als einmal in fünf Jahren überschritten werden.

C = B + A / t

C: NH₃ – Konzentration [g / m³]

A: Konstante = $1.5 [g \times min / m^3]$

B: Konstante = $0.025 [g/m^3]$

t: Zeit [min]

3. Neue Lösungsansätze

Grenzwerte der stofflichen Belastung – GUS (TSS)

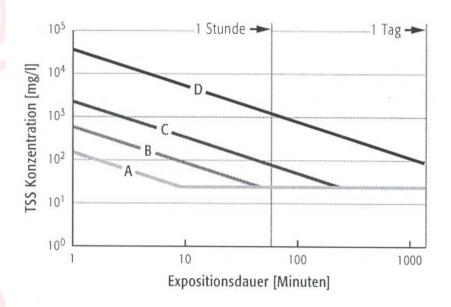


Abb. 2 Beeinträchtigung von Fischen abhängig von Konzentration und Dauer der Exposition [11]. Ermittelt für Salmonidae mit einem «Sicherheitsfaktor» von zehn, um die Effekte adsorbierter Stoffe zu berücksichtigen [12]. Der physiologische Stress ist bei A nicht vorhanden (Grenzwert für Verhaltensänderungen), B leicht, C mittel, D gross (Schwellenwert für Letalität).

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

3. Neue Lösungsansätze

Grenzwerte der stofflichen Belastung – Akkumulation von Sedimenten

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

Versuch einer Synthese

Kriterium	Grenzwert für GUS-Akkumulation	Maximaler Zeitanteil der Grenz- wertüberschreitung [% pro Jahr]
Kolmation der Gewässersohle (physikalisch)	625 g _{GUS} m ⁻² a ⁻¹	20%
Akkumulation von schwerabbaubaren Substanzen (Schwermetalle, PAK)	25 g _{GUS} m ⁻² a ⁻¹	5%
Sauerstoffzehrung: • Mischsystem (Regenüberläufe)	5 g _{GUS} m ⁻² d ⁻¹	10% (0% von September bis März)
Trennsystem	16 g _{GUS} m ⁻² d ⁻¹	10% (0% von September bis März)

Tab. 3 Vorschläge der Grenzwerte für die maximal tolerierbare Akkumulationsraten von GUS in Sedimenten für eine Kiesgewässersohle. Die Werte sind in der Einheit Gramm GUS pro Quadratmeter und Jahr (g_{GUS} m⁻² a⁻¹) oder Gramm GUS pro Quadratmeter und Tag (g_{GUS} m⁻² d⁻¹).

3. Neue Lösungsansätze

Grenzwerte der stofflichen Belastung – gelöster Sauerstoff

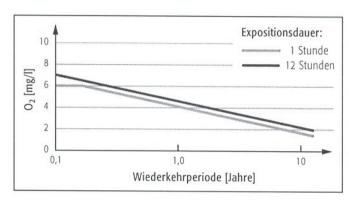
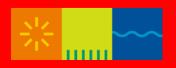


Abb. 3 Anforderungen an die minimalen Sauerstoffkonzentrationen in Dänemark für Forellengewässer [21].

Wiederkehrintervall	Minimale Konzentration des gelösten Sauerstoffs [mg/l] während der Dauer von:					
	1 Stunde	6 Stunden	24 Stunden			
1 Monat	5,0	5,5	6,0			
3 Monate	4,5	5,0	5,5			
1 Jahr	4,0	4,5	5,0			

Tab. 4 Grenzwerte der Sauerstoffkonzentrationen (nach [22]). Die tabellierten Werte basieren auf ökotoxikologischen Tests mit Forellen und gelten bei Ammoniakkonzentrationen < 0.02~mg NH $_3$ -N/I. Bei grösseren Konzentrationen gelten folgende Korrekturwerte:

Konzentration NH₃-N Korrekturwerte für O₂


0.02 - 0.15 mg/l + 1 mg/l > 0.15 mg/l + 2 mg/l

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

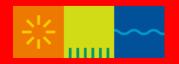
3. Neue Lösungsansätze

Grenzwerte der stofflichen Belastung – Nährstoffe

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze


Kritischer Vergleich

Versuch einer Synthese

Phosphor und Stickstoff

Festlegung dieser Emissionen durch Berücksichtigung aller Phosphorund Stickstoffquellen im Einzugsgebiet, inkl. Landwirtschaft, Kläranlagenabläufe etc.

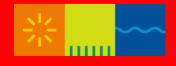
Behörde legt im Einzelfall fest

3. Neue Lösungsansätze

Grenzwerte der physikalischen Belastung

Ökomorphologische	Max. Anzahl kritischer Ereignisse pro Jahr						
Qualität	Breitenvariabilität:						
	ausgeprägt	eingeschränkt	keine				
Klasse I	10	5	3				
Klasse II	5	3	1				
Klasse III & IV	3	i	<1				

Tab. 5 Grenzwerte der hydraulisch-mechanischen Belastung [8]: Klasse I bedeutet «natürlich/naturnah», Klasse II «wenig beeinträchtigt», Klasse III «stark beeinträchtigt» und Klasse IV «naturfremd/künstlich» [25].


hydraulisch-mechanische Beeinträchtigung

Temperaturparameter	Grenzwert	
Maximale Temperatur nach der Einleitung aus der Kanalisation (Sommerhalbjahr)	< 25°C	
Maximale Temperatur nach der Einleitung aus der Kanalisation (Winterhalbjahr)	< 12°C	
Maximal tolerierbare Änderung der Temperatur durch Einleitung aus der Kanalisation	<7°C	

Tab. 6 Grenzwerte für die Wassertemperatur im Vorfluter.

Temperatur entspricht Gesetz

entspricht nicht Gesetz?

Problemanalyse Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Versuch einer Synthese

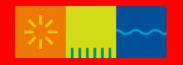
Kritischer Vergleich

3. Neue Lösungsansätze

Grenzwerte der hygienischen Belastung

Übersicht über die Lösungsstrategien

Neue Lösungsansätze


Kritischer Vergleich

Versuch einer Synthese

Problemanalyse

Qualitätsklasse	E. coli pro 100 ml	Salmonellen pro 1000 ml	
Klasse A	< 100	nicht nachweisbar	
Klasse B	100 bis 1000	nicht nachweisbar	
Klasse C	< 1000 > 1000	nachweisbar nicht nachweisbar	
Klasse D	> 1000	nachweisbar	

Tab. 7 Anforderungen an die Badewasserqualität gemäss den «Empfehlungen für die hygienische Beurteilung von See- und Flussbädern» [26]. (BAG, 1991)

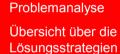
3. Neue Lösungsansätze

Ästhetische Belastung

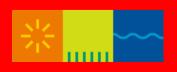
Grenzwerte nicht vorhanden

Beobachtungen zeigen: MWE < 5 – 10 mal / a \Rightarrow geringe ästhetische Probleme

Zurückhalten von Grobstoffen: MWE > 10 mal / a ⇒ nach Absprache mit der kant. Gewässerschutzfachstelle (GWS-FS)


Festlegen der Einleitungsbedingungen in Absprache mit der kant. GWS-FS

Anforderungen basieren auf zahlreichen wissenschaftlichen Untersuchungen, jedoch national und international wenig Erfahrungen mit deren Anwendungen.



Anforderungen gem. GSchV, Art. 6 können verschärft, ergänzt oder erleichtert werden.

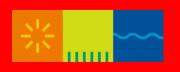
Neue Lösungsansätze

Kritischer Vergleich

3. Neue Lösungsansätze

Zusammenfassung der Anforderungen an die Abwassereinleitungen bei Regenwetter

- Berücksichtigung verschiedener Gewässerarten
- Mindestanforderungen (ZB G, ARA-GEP, REP)
- Grenzwerte der stofflichen Belastung
- Grenzwerte der physikalischen Belastung
- Grenzwerte der hygienischen Belastung
- Ästhetische Belastung
- Festlegen der Einleitungsbedingungen in Absprache mit der kant. GWS-FS


VSA Richtlinie STORM, Entwurf 2005 REBEKA II – Software zur Unterstützung der Massnahmenplanung

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

3. Neue Lösungsansätze

Fallstudie Möhlinbach im Kanton Aargau

ARA Mohlin

Zeiningen

Zuzgen

ARA Hellikon

Wegenstetten

Abb.1 Schema des Entwässerungssystems in Möhlintal (Ist-Zustand) Die Mischwassereinleitungen sind mit Pfeilen dargestellt.

Allgemeine Daten

- * 10 km langes Juratal
- # Einzugsgebiet ca. 13 000 EW
- Gemeinden: Möhlin, Zeiningen, Zuzgen, Hellikon, Wegenstetten
- * EZG Möhlinbach: 32.3 km²; $Q_{347} = 10 - 100l/s$; HW 1999 = 14 m³/s
- * 24 MWE und 1 MWB

Fliessabschnitte:	Vorschlag AfU 1977			Vorschlag «STORM»		
Möhlintal	Massnahme	Investitionskosten [Fr.]	Jahreskosten [Fr./a]	Massnahme	Investitionskosten [Fr.]	Jahreskosten [Fr./a]
Wegenstetten	RÜB 170 m ³	510 000	10 200	Rechen, Havariebecken V = 30 m ³	200 000	6 400
Hellikon	Umbau ARA zu RÜB	Nicht berücksichtigt		Umbau ARA zu RÜB	Nicht berücksichtigt	
Zuzgen	RÜB 180 m ³	540 000	10 800	Rechen, Havariebecken V = 30 m ³	210 000	7 000
Zeiningen	RÜB 380 m ³	1140 000	21 300	RÜB 300 m ³	870 000	17 400
Möhlin	Rechen, Fangkanäle, RÜB 160 m ³	1350 000	31 700	RÜB 500 m³	1350 000	27 000
Total		3 540 000	74 000		2 630 000	57 800

Tab. 6 Vergleich der Massnahmen und deren Kosten. Annahme Lebensdauer: Bauteile 50 Jahre, maschinelle Teile 15 Jahre. Realzins: langjährige Differenz zwischen dem Marktzins und der Teuerung: 2 % [11].

Problemanalyse

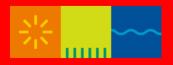
Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Versuch einer Synthese

Kritischer Vergleich

4. Kritischer Vergleich


	STORM	MWM BL	BAFU
Berücksichtigung verschiedener	5 Stufen	2 Stufen	> 3 Stufen
Gewässerarten			
Mindestanforderungen	+	+	+
(ZB G, ARA-GEP, REP)			
Grenzwerte der stofflichen Belastung	spezifisch	pauschal	empirisch
(Ammoniak, GUS, Akkumulation v.			
Sedimenten, gelöster Sauerstoff)			
Grenzwerte der physikalischen	spezifisch	pauschal	empirisch
Belastung			
(hydraulisch – mechanisch, Temperatur)			
Grenzwerte der hygienischen	spezifisch	pauschal	empirisch
Belastung			
Ästhetische Belastung	spezifisch	pauschal	-
Festlegen der Einleitungsbedingungen	ja	nicht nötig	ja
in Absprache mit der kant. GWS-FS			
Immissionsorientiert	ja	ja	nein

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

5. Versuch einer Synthese

BAFU?
BL?
STORM?

Wegleitung BAFU BL

- empirischer Ansatz
- abgestützt auf Gewässerbeobachtungen und wissenschaftliche Grundlagen
- hohe Wirkung der Massnahmen
- praktisch noch keine Massnahmen realisiert
- <1 % der Gesamtkosten der Siedlungsentwässerung
- STRA, kant. TBA und Gemeinden sind gefordert

die Kriterien Temperatur und hydraulischer Schock fehlen kritisches Mischverhältnis (1:1)

Entlastungen erst ab z=5 führt zu grossen Anlagen

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

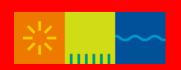
Versuch einer Synthese

Kritischer Vergleich

5. Versuch einer Synthese

Richtlinie BL

- pragmatischer Ansatz (pauschalisiert)
- @ abgestützt auf Gewässerbeobachtungen in Akutereignissen (GUS, Sauerstoffdefizit)
- rasche und hohe Wirkung der Massnahmen
- Speichervolumen zu ca. 50% realisiert
- 2-3 % der Gesamtkosten der Siedlungsentwässerung
 - begleitende Massnahmen in den Gemeinden nötig (Regenwasserabkopplung)


Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze

Kritischer Vergleich

Versuch einer Synthese

Fachstelle Siedlungsentwässerung und Landwirtschaft - 28.04.2006

pragmatischer Ansatz

verglichen mit STORM vermutlich höhere Kosten

Überdimensionierung prüfen

5. Versuch einer Synthese

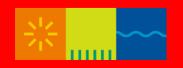
STORM

- spezifischer Ansatz
- abgestützt auf zahlreiche wissenschaftliche Untersuchungen
- rasche Wirkung der Massnahmen
- vermutlich < 2 % der Gesamtkosten der Siedlungsentwässerung
 - begleitende Massnahmen in den Gemeinden nötig (Regenwasserabkopplung)

Problemanalyse

Übersicht über die Lösungsstrategien

Neue Lösungsansätze


Kritischer Vergleich

Versuch einer Synthese

verglichen mit Richtlinie BL geringere Speicherwirkung

Mortalität Bachforelle 10 % (n=5)

theoretischer Ansatz: Wirkung prüfen

